

Freeze-thaw resistance of concrete

New findings on the mechanisms and prognosis of the degradation

Harald S. Müller

Institute of Concrete Structures and Building Materials – Department Building Materials

Contents

- Freeze-thaw attack problem statement
- Service life design for frost attack
- Mechanisms of deterioration
- Experimental investigations and model development
- Conclusions and outlook

Frost damage of concrete

Example: Frost damage on a hydroelectric power plant

- <u>external damage of concrete:</u> scaling, spalling, ...
- internal damage of concrete:
 cracks, loss of strength,
 increased permeability, ...

3

Frost damage – problem statement

- ➡ reliable, physically based models are lacking
- The descriptive concept given in standards (limiting values for material properties) is based just on experience
 - ⇒ proved to be a rather uncertain approach
- Accelerated performance tests
 - ⇒ only partially and with considerable uncertainities transferable to the conditions in practice

Service life design for frost attack – approaches applied in practice today

5

Service life design for frost attack – approaches of today and tomorrow

Guideline, e.g. EN 206 / DIN 1045-2

action S	resistance R				
exposure condition	max w/c [-]	min f _{ck} [N/mm²]	min c [kg/m³]	min. air pores [%]	concrete cover [mm]
XF3: frost, high water saturation, no de-icing agent	0,55 0,50	C25/30 C35/45	300 320	4,5 -	-

To be developed (research)

physical model for frost damage	S = function (concept) to consider the local climatical actions		
	R = material model based on physical mechanisms to describe the resistance		

Service life design for frost attack

Performance concept (models) approach: $p_f(t) = p_f[R(t) - S(t) \le 0] \le p_{target}$

To be developed (research)

7

physical model for frost damage	S = function (concept) to consider the local climatical actions
	R = material model based on physical mechanisms to describe the resistance

Remarks:

- Full probabilistic design means that all mechanisms are understood and correspondingly modelled, and that the statistical characteristics of the governing parameters are known.
- Based on such an approach simplyfied code-type models may be derived, such as concepts with partial safety factors etc.
- Suitable code-type design tools, such as simple formulas, diagrams or tables can be developed while maintaining the probabilistic concept, which is characteristic for engineering design!
- Research is mendatory!

Actions causing damages due to real weather events

8

Determination of the frequency and intensity of frost attacks

9

Number of frost periods in 1970 – 2000

precipitation at approx. 85 % of all frost periods

KIT Karlsruhe, Germany SMP Engineers, Karlsruhe, Germany

Classification of the freeze-thaw cycles by means of the minimum temperature T_{min}

The minimum temperature depends pronouncedly on the location. In Braunlage and Garmisch: Majority of FTC with $T_{min} < -5$ °C

Empirical models for the threeze-thaw attack

M

Model by Vesikari

$$\mathbf{r}(t) = \mathbf{c}_{env} \cdot \mathbf{c}_{cur} \cdot \mathbf{c}_{age} \cdot \mathbf{a}^{-0,7} (\mathbf{f}_{ck} + \mathbf{8})^{-1,4} \cdot \mathbf{t}$$

with	r(t)	spalling at time t [mm]
	C _{env}	const. – intensity and likeliness of a freeze-thaw attack [-]
	C _{cur}	const. – influence of curing [-]
	Cage	const. – maturity of concrete and additon of additives [-]
	а	air void content [-]
	f _{ck}	concrete compressive strength [MPa]

Model by Lowke, Schiessl & Brandes

 $r(FTC) = k \cdot f_{s} \cdot f_{Tmin} \cdot f_{wc} \cdot f_{bin} \cdot f_{aea} \cdot f_{carb}$

r	spalling after number of freeze- thaw-cycles [m]
k	max. allowable spalling per FTC [m/FTC]
fs	const. – salt concentration [-]
f _{Tmin}	const. – min. temperature [-]
f _{wc}	const. – w/c-ratio [-]
f _{bin}	const. – type of binder [-]
f _{aea}	const. – air void content [-]
f _{carb}	const carbon. bound. zone [-]
	r k fs f_{Tmin} f_{wc} f_{bin} f_{aea} f_{carb}

Low accuracy due to:

- physical mechanisms are ignored
- affecting parameters are not interrelated
- basic deficiencies of the product-type approach

Mechanisms of the frost damage

Limit state for the occurence of damage S_{crit}

 significant concrete damage initiated for S > S_{crit} = 0.7 - 0.9

critical saturation S_{crit} well investigated

 insufficient knowledge on time development of saturation S(t) before damage occurs

time until critical saturation S_{crit} is reached is unknown

Consequences of cyclic freeze-thaw loading

Basis idea of modelling

Determination/prognosis of the water uptake depending on time and location during freeze-thaw actions

Measurement of frost suction

18

Result of the NMR measurement

Conversion of signal intensity to saturation degree is possible

Conversion of the signal intensity SI to saturation degree S

Results: Water uptake for w/c = 0.4

Major conclusions

- increased saturation at the edge of the stressed surface (S > 0.9)
- waterfront penetrates the sample with time
- approximate homogeneous moisture distribution after capillary suction (about 40 days)

Results: Water uptake for w/c = 0.4

Results: Water uptake for w/c = 0.4

Temperature cycles including freeze-thaw phases cause an accelerated saturation of the sample and an increased amount of uptaken water (mechanism: mirco-ice-lens pump acc. to Setzer)

Results: Water uptake w/c = 0.4

 $S \ge 1$ indicates damage corresponding to microcrack formation

24 Sept. 16, 2019 Freeze-thaw resistance of concrete – Prof. Harald S. Müller

Effect on frost suction characteristics

Effect on frost suction characteristics

26

Sept. 16, 2019

Frost suction for w/c = 0.4; Tmin = -10 °C

Effect of frost suction decreases with decreasing w/c ratio

Effect on frost suction characteristics

Integral saturation for w/c = 0.35 and w/c = 0.40

Frost suction can be quantified with high spatial resolution using NMR technique

Influence of minimum temperature T_{min}

Saturation increases with decreasing frost temperature T_{min} , in particular for -10 °C < T_{min} < -5 °C

In-situ observation of the freezing process

Hardened cement paste, w/c = 0.6, $T_{min} \approx -10$ °C

Freezing temperature of water as function of microstructural damage

Water in freeze-thaw damaged parts of sample freezes at significantly higher temperatures than in undamaged parts

Development of the model

Summary of key findings

- Sample boundary zone reaches values of S ≈ 1.0 by capillary suction
- Frost suction significantly exceeds capillary suction (water uptake)
- Saturation degree S > 1.0 indicate damage (cracking)

Criterion for frost damage

 $S(x,t) \ge S_{crit}$

S(x,t) to be calculated by means of a suitable approach

Model describing S(x,t) due to combined capillary and frost suction

$$\frac{\partial S}{\partial t} = \frac{\partial}{\partial x} \left(W(S) \cdot (1 + F_{MELP}) \cdot \frac{\partial S}{\partial x} \right) \qquad W(S) = W_1 \left(\alpha_0 + \frac{1 - \alpha_0}{1 + \left(\frac{1 - S}{1 - S_W}\right)^n} \right)$$

$$\begin{array}{c} S \\ t, x \\ W(S) \\ W_1 \\ F_{MELP} \end{array} \qquad \text{degree of saturation [-]} \\ water transport coefficient [mm²/d] (fit coefficients \alpha_0, S_W, n [-]) \\ water transport coefficient [mm²/d] for S = 1.0 \\ F_{MELP} \end{array} \qquad \begin{array}{c} W(S) \\ Bažant et al., Materials & Structures \\ 5 (1972), pp. 709-720 \end{array}$$

Schematic illustration of the model approach

• $S = V_W / V_{P,gesamt}$

 Definition des Grenzzustandes des Sättigungsgrades S_{lim} ≥ S_{krit}

Model validation – capillary suction

Model validation – frost suction

New model at a glance

Service life design for frost attack – outlook

Performance concept (models)

approach: $p_f(t) = p_f[R(t) - S(t) \le 0] \le p_{target}$

Future relations in guidelines

physical model for frost damage *)	<pre>S = Sat(z,t) = f (climate, environment, material)</pre>		
	R = Sat _{crit} = f (material)		

*) To avoid confusion, saturation is expressed here as "Sat" (not as S as before)

Open questions / future works

- Classification of the actions related to geographical regions, e.g. classified due to climate
- Extension of the model for concrete and for frost de-icing agents attack
- Verification of the hypothesis that the model needs no failure criterion
- Development of simplyfied approaches, e.g. using partial safety factors, defined/given service lifes etc.

The support of the Germany Research Foundation (DFG) is gratefully acknowledged.

Thank you very much